On the high-density expansion for Euclidean Random Matrices

نویسنده

  • T. S. Grigera
چکیده

T. S. Grigera, 2 V. Martin-Mayor, G. Parisi, P. Urbani, and P. Verrocchio 8 1 Instituto de Investigaciones Fisicoqúımicas Teóricas y Aplicadas (INIFTA) and Departamento de F́ısica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, c.c. 16, suc. 4, 1900 La Plata, Argentina CCT La Plata, Consejo Nacional de Investigaciones Cient́ıficas y Técnicas, Argentina Departamento de F́ısica Teórica I, Universidad Complutense, 28040 Madrid, Spain. Instituto de Biocomputación y F́ısica de Sistemas Complejos (BIFI), Zaragoza, Spain. Dipartimento di Fisica, INFM and INFN, Università di Roma “La Sapienza”, 00185 Roma, Italy. Dipartimento di Fisica, Università di Roma “La Sapienza”, 00185 Roma, Italy. Dipartimento di Fisica, Università di Trento, via Sommarive 14, 38050 Povo, Trento, Italy. Istituto Sistemi Complessi (ISC-CNR), Via dei Taurini 19, 00185 Roma, Italy

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gyrovector Spaces on the Open Convex Cone of Positive Definite Matrices

‎In this article we review an algebraic definition of the gyrogroup and a simplified version of the gyrovector space with two fundamental examples on the open ball of finite-dimensional Euclidean spaces‎, ‎which are the Einstein and M"{o}bius gyrovector spaces‎. ‎We introduce the structure of gyrovector space and the gyroline on the open convex cone of positive definite matrices and explore its...

متن کامل

Vibrational spectra in glasses

The findings of X-ray and neutron scattering experiments on amorphous systems are interpreted within the framework of the theory of Euclidean random matrices. This allows to take into account the topological nature of the disorder, a key ingredient which strongly affects the vibrational spectra of those systems. We present a resummation scheme for a perturbative expansion in the inverse particl...

متن کامل

Eigenvalues of Euclidean random matrices

We study the spectral measure of large Euclidean random matrices. The entries of these matrices are determined by the relative position of n random points in a compact set Ωn of R. Under various assumptions we establish the almost sure convergence of the limiting spectral measure as the number of points goes to infinity. The moments of the limiting distribution are computed, and we prove that t...

متن کامل

Comparative Study of Random Matrices Capability in Uncertainty Detection of Pier’s Dynamics

Because of random nature of many dependent variables in coastal engineering, treatment of effective parameters is generally associated with uncertainty. Numerical models are often used for dynamic analysis of complex structures, including mechanical systems. Furthermore, deterministic models are not sufficient for exact anticipation of structure’s dynamic response, but probabilistic models...

متن کامل

تشخیص سرطان پستان با استفاده از برآورد ناپارمتری چگالی احتمال مبتنی بر روش‌‌های هسته‌ای

Introduction: Breast cancer is the most common cancer in women. An accurate and reliable system for early diagnosis of benign or malignant tumors seems necessary. We can design new methods using the results of FNA and data mining and machine learning techniques for early diagnosis of breast cancer which able to detection of breast cancer with high accuracy. Materials and Methods: In this study,...

متن کامل

Eigenvalue density of correlated complex random Wishart matrices.

Using a character expansion method, we calculate exactly the eigenvalue density of random matrices of the form M dagger M where M is a complex matrix drawn from a normalized distribution P(M) approximately exp(-Tr [AMB M dagger]) with A and B positive definite (square) matrices of arbitrary dimensions. Such so-called correlated Wishart matrices occur in many fields ranging from information theo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010